Endurance training volume cannot entirely substitute for the lack of intensity

Author:

Matomäki PekkaORCID,Heinonen Olli J.,Nummela Ari,Kyröläinen HeikkiORCID

Abstract

Purpose Very low intensity endurance training (LIT) does not seem to improve maximal oxygen uptake. The purpose of the present study was to investigate if very high volume of LIT could compensate the lack of intensity and is LIT affecting differently low and high intensity performances. Methods Recreationally active untrained participants (n = 35; 21 females) cycled either LIT (mean training time 6.7 ± 0.7 h / week at 63% of maximal heart rate, n = 16) or high intensity training (HIT) (1.6 ± 0.2 h /week, n = 19) for 10 weeks. Two categories of variables were measured: Low (first lactate threshold, fat oxidation at low intensity exercise, post-exercise recovery) and high (aerobic capacity, second lactate threshold, sprinting power, maximal stroke volume) intensity performance. Results Only LIT enhanced pooled low intensity performance (LIT: p = 0.01, ES = 0.49, HIT: p = 0.20, ES = 0.20) and HIT pooled high intensity performance (LIT: p = 0.34, ES = 0.05, HIT: p = 0.007, ES = 0.48). Conclusions Overall, very low endurance training intensity cannot fully be compensated by high training volume in adaptations to high intensity performance, but it nevertheless improved low intensity performance. Therefore, the intensity threshold for improving low intensity performance is lower than that for improving high intensity performance. Consequently, evaluating the effectiveness of LIT on endurance performance cannot be solely determined by high intensity performance tests.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3