Natural language processing augments comorbidity documentation in neurosurgical inpatient admissions

Author:

Sastry Rahul A.ORCID,Setty Aayush,Liu David D.,Zheng Bryan,Ali Rohaid,Weil Robert J.,Roye G. Dean,Doberstein Curtis E.,Oyelese Adetokunbo A.ORCID,Niu Tianyi,Gokaslan Ziya L.,Telfeian Albert E.

Abstract

Objective To establish whether or not a natural language processing technique could identify two common inpatient neurosurgical comorbidities using only text reports of inpatient head imaging. Materials and methods A training and testing dataset of reports of 979 CT or MRI scans of the brain for patients admitted to the neurosurgery service of a single hospital in June 2021 or to the Emergency Department between July 1–8, 2021, was identified. A variety of machine learning and deep learning algorithms utilizing natural language processing were trained on the training set (84% of the total cohort) and tested on the remaining images. A subset comparison cohort (n = 76) was then assessed to compare output of the best algorithm against real-life inpatient documentation. Results For “brain compression”, a random forest classifier outperformed other candidate algorithms with an accuracy of 0.81 and area under the curve of 0.90 in the testing dataset. For “brain edema”, a random forest classifier again outperformed other candidate algorithms with an accuracy of 0.92 and AUC of 0.94 in the testing dataset. In the provider comparison dataset, for “brain compression,” the random forest algorithm demonstrated better accuracy (0.76 vs 0.70) and sensitivity (0.73 vs 0.43) than provider documentation. For “brain edema,” the algorithm again demonstrated better accuracy (0.92 vs 0.84) and AUC (0.45 vs 0.09) than provider documentation. Discussion A natural language processing-based machine learning algorithm can reliably and reproducibly identify selected common neurosurgical comorbidities from radiology reports. Conclusion This result may justify the use of machine learning-based decision support to augment provider documentation.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3