Abstract
Neural respiratory drive (NRD) is measured using a non-invasive recording of respiratory electromyographic signal. The parasternal intercostal muscle can assess the imbalance between the load and capacity of respiratory muscles and presents a similar pattern to diaphragmatic activity. We aimed to analyze the neural respiratory drive in seventeen individuals with hypertension during quite breathing and maximal voluntary ventilation (MVV) (103.9 ± 5.89 vs. 122.6 ± 5 l/min) in comparison with seventeen healthy subjects (46.5 ± 2.5 vs. 46.4 ± 2.4 years), respectively. The study protocol was composed of quite breathing during five minutes, maximum inspiratory pressure followed by maximal ventilatory ventilation (MVV) was recorded once for 15 seconds. Anthropometric measurements were collected, weight, height, waist, hip, and calf circumferences, waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), BMI, and conicity index (CI). Differences between groups were analyzed using the unpaired t-test or Mann-Whitney test to determine the difference between groups and moments. A significance level of 5% (p<0,05) was adopted for all statistical analyses. The group of individuals with hypertension presented higher values when compared to the healthy group for neural respiratory drive (EMGpara% 17.9±1.3 vs. 13.1±0.8, p = 0.0006) and neural respiratory drive index (NRDi (AU) 320±25 vs. 205.7±15,p = 0.0004) during quiet breathing and maximal ventilatory ventilation (EMGpara% 29.3±2.7 vs. 18.3±0.8, p = 0.000, NRDi (AU) 3140±259.4 vs. 1886±73.1,p<0.0001), respectively. In conclusion, individuals with hypertension presented higher NRD during quiet breathing and maximal ventilatory ventilation when compared to healthy individuals.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Public Library of Science (PLoS)
Reference46 articles.
1. 7th Brazilian guideline of arterial hypertension: Chapter 1—Concept, Epidemiology and Primary Prevention.;MVB Malachias;Arquivos brasileiros de cardiologia,2016
2. Respiratory muscle strength in congestive heart failure;MD Hammond;Chest,2004
3. Alveolar-capilar membrane dysfunction in heart failure: evidence of a pathophysiologic role;M. Guazzi;Chest,2003
4. Neural respiratory drive in obesity.;J Steier;Thorax,2009
5. Central nervous integration of cardiovascular control;KM Spyer;J Exp Biol,1982