Novel real number representations in Ising machines and performance evaluation: Combinatorial random number sum and constant division

Author:

Endo Katsuhiro,Matsuda Yoshiki,Tanaka ShuORCID,Muramatsu MayuORCID

Abstract

Quantum annealing machines are next-generation computers for solving combinatorial optimization problems. Although physical simulations are one of the most promising applications of quantum annealing machines, a method how to embed the target problem into the machines has not been developed except for certain simple examples. In this study, we focus on a method of representing real numbers using binary variables, or quantum bits. One of the most important problems for conducting physical simulation by quantum annealing machines is how to represent the real number with quantum bits. The variables in physical simulations are often represented by real numbers but real numbers must be represented by a combination of binary variables in quantum annealing, such as quadratic unconstrained binary optimization (QUBO). Conventionally, real numbers have been represented by assigning each digit of their binary number representation to a binary variable. Considering the classical annealing point of view, we noticed that when real numbers are represented in binary numbers, there are numbers that can only be reached by inverting several bits simultaneously under the restriction of not increasing a given Hamiltonian, which makes the optimization very difficult. In this work, we propose three new types of real number representation and compared these representations under the problem of solving linear equations. As a result, we found experimentally that the accuracy of the solution varies significantly depending on how the real numbers are represented. We also found that the most appropriate representation depends on the size and difficulty of the problem to be solved and that these differences show a consistent trend for two annealing solvers. Finally, we explain the reasons for these differences using simple models, the minimum required number of simultaneous bit flips, one-way probabilistic bit-flip energy minimization, and simulation of ideal quantum annealing machine.

Funder

Japan Science and Technology Agency

National Institutes for Quantum Science and Technology

Japan Society for the Promotion of Science

the Ministry of Education, Culture, Sports, Science and Technology, Japan

Publisher

Public Library of Science (PLoS)

Reference60 articles.

1. Quantum annealing in the transverse Ising model;T. Kadowaki;Phys. Rev. E,1998

2. Quantum annealing with manufactured spins;M. W. Johnson;Nature,2011

3. What is the computational value of finite-range tunneling?;V. S. Denchev;Phys. Rev. X,2016

4. Colloquium: Quantum annealing and analog quantum computation;A. Das;Rev. Mod. Phys,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3