Response of human peripheral blood monocyte-derived macrophages (PBMM) to demineralized and decellularized bovine bone graft substitutes

Author:

Rani K. G. Aghila,Al-Rawi Ahmed M.ORCID,Al Qabbani AliORCID,AlKawas Sausan,Mohammad Mohammad G.ORCID,Samsudin A. R.ORCID

Abstract

The performance of apparently biocompatible implanted bovine bone grafts may be compromised by unresolved chronic inflammation, and poor graft incorporation leading to implant failure. Monitoring the intensity and duration of the inflammatory response caused by implanted bone grafts is crucial. In this study, the ability of demineralized (DMB) and decellularized (DCC) bovine bone substitutes in initiating inflammatory responses to peripheral blood monocyte-derived macrophages (PBMMs) was investigated. The response of PBMMs to bone substitutes was evaluated by using both direct and indirect cell culture, reactive oxygen species (ROS) generation, apoptosis, immunophenotyping, and cytokine production. Analysis of DMB and DCC substitutes using scanning electron microscope (SEM) showed a roughened surface with a size ranging between 500 and 750 μm. PBMMs treated with DMB demonstrated cell aggregation and clumping mimicking lipopolysaccharide (LPS) treated PBMMs and a higher proliferation ability (166.93%) compared to control (100%) and DCC treatments (115.64%; p<0.001) at 24h. This was associated with a significantly increased production of intracellular ROS in PBMMs exposed to DMB substitutes than control (3158.5 vs 1715.5; p<0.001) and DCC treatment (2117.5). The bone substitute exposure also caused an increase in percentage apoptosis which was significantly (p<0.0001) higher in both DMB (27.85) and DCC (29.2) treatment than control (19.383). A significant increase in proinflammatory cytokine expression (TNF-α: 3.4 folds; p<0.05) was observed in DMB substitute-treated PBMMs compared to control. Notably, IL-1β mRNA was significantly higher in DMB (21.75 folds; p<0.0001) than control and DCC (5.01 folds). In contrast, DCC substitutes exhibited immunoregulatory effects on PBMMs, as indicated by the expression for CD86, CD206, and HLDR surface markers mimicking IL-4 treatments. In conclusion, DMB excites a higher immunological response compared to DCC suggesting decellularization process of tissues dampen down inflammatory reactions when exposed to PBMM.

Funder

University of Sharjah

Publisher

Public Library of Science (PLoS)

Reference43 articles.

1. Bone grafts and biomaterials substitutes for bone defect repair: A review;W Wang;Bioact Mater,2017

2. Bone grafts in dentistry;P Kumar;J Pharm Bioallied Sci,2013

3. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments;R Zhao;Molecules,2021

4. Substituted hydroxyapatites for bone regeneration: A review of current trends;JTB Ratnayake;J Biomed Mater Res B Appl Biomater,2017

5. Autogenous bone graft: basic science and clinical implications;GF Rogers;J Craniofac Surg,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3