Integrating niche and occupancy models to infer the distribution of an endemic fossorial snake (Atractus lasallei)

Author:

Cruz-Arroyave Camilo AlejandroORCID,Toro-Cardona Felipe A.ORCID,Parra Juan LuisORCID

Abstract

Understanding species distribution and habitat preferences is crucial for effective conservation strategies. However, the lack of information about population responses to environmental change at different scales hinders effective conservation measures. In this study, we estimate the potential and realized distribution of Atractus lasallei, a semi-fossorial snake endemic to the northwestern region of Colombia. We modelled the potential distribution of A. lasallei based on ecological niche theory (using maxent), and habitat use was characterized while accounting for imperfect detection using a single-season occupancy model. Our results suggest that A. lasallei selects areas characterized by slopes below 10°, with high average annual precipitation (>2500mm/year) and herbaceous and shrubby vegetation. Its potential distribution encompasses the northern Central Cordillera and two smaller centers along the Western Cordillera, but its habitat is heavily fragmented within this potential distribution. When the two models are combined, the species’ realized distribution sums up to 935 km2, highlighting its vulnerability. We recommend approaches that focus on variability at different spatio-temporal scales to better comprehend the variables that affect species’ ranges and identify threats to vulnerable species. Prompt actions are needed to protect herbaceous and shrub vegetation in this region, highly demanded for agriculture and cattle grazing.

Publisher

Public Library of Science (PLoS)

Reference77 articles.

1. The biodiversity of species and their rates of extinction, distribution, and protection;SL Pimm;Science,2014

2. Conservation biogeography: Assessment and prospect.;RJ Whittaker;Divers Distrib.,2005

3. Impacts of climate warming on terrestrial ectotherms across latitude.;CA Deutsch;PNAS,2008

4. Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B;RB Huey;Biol Sci,2009

5. Patterns of reptile diversity loss in response to degradation in the spiny forest of southern Madagascar;O Theisinger;Herpetol Conserv Biol,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3