Image classification with symbolic hints using limited resources

Author:

Jørgensen Mikkel Godsk,Tětková LenkaORCID,Hansen Lars Kai

Abstract

Typical machine learning classification benchmark problems often ignore the full input data structures present in real-world classification problems. Here we aim to represent additional information as “hints” for classification. We show that under a specific realistic conditional independence assumption, the hint information can be included by late fusion. In two experiments involving image classification with hints taking the form of text metadata, we demonstrate the feasibility and performance of the fusion scheme. We fuse the output of pre-trained image classifiers with the output of pre-trained text models. We show that calibration of the pre-trained models is crucial for the performance of the fused model. We compare the performance of the fusion scheme with a mid-level fusion scheme based on support vector machines and find that these two methods tend to perform quite similarly, albeit the late fusion scheme has only negligible computational costs.

Funder

Danish Pioneer Centre for AI

Innovationsfonden

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3