AmiR-P3: An AI-based microRNA prediction pipeline in plants

Author:

Ataei SobhanORCID,Ahmadi Jafar,Marashi Sayed-AmirORCID,Abolhasani IliaORCID

Abstract

Background MicroRNAs (miRNAs) are small noncoding RNAs that play important post-transcriptional regulatory roles in animals and plants. Despite the importance of plant miRNAs, the inherent complexity of miRNA biogenesis in plants hampers the application of standard miRNA prediction tools, which are often optimized for animal sequences. Therefore, computational approaches to predict putative miRNAs (merely) from genomic sequences, regardless of their expression levels or tissue specificity, are of great interest. Results Here, we present AmiR-P3, a novel ab initio plant miRNA prediction pipeline that leverages the strengths of various utilities for its key computational steps. Users can readily adjust the prediction criteria based on the state-of-the-art biological knowledge of plant miRNA properties. The pipeline starts with finding the potential homologs of the known plant miRNAs in the input sequence(s) and ensures that they do not overlap with protein-coding regions. Then, by computing the secondary structure of the presumed RNA sequence based on the minimum free energy, a deep learning classification model is employed to predict potential pre-miRNA structures. Finally, a set of criteria is used to select the most likely miRNAs from the set of predicted miRNAs. We show that our method yields acceptable predictions in a variety of plant species. Conclusion AmiR-P3 does not (necessarily) require sequencing reads and/or assembled reference genomes, enabling it to identify conserved and novel putative miRNAs from any genomic or transcriptomic sequence. Therefore, AmiR-P3 is suitable for miRNA prediction even in less-studied plants, as it does not require any prior knowledge of the miRNA repertoire of the organism. AmiR-P3 is provided as a docker container, which is a portable and self-contained software package that can be readily installed and run on any platform and is freely available for non-commercial use from: https://hub.docker.com/r/micrornaproject/amir-p3

Publisher

Public Library of Science (PLoS)

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3