Load forecasting method based on CEEMDAN and TCN-LSTM

Author:

Heng LuoORCID,Hao Cheng,Nan Liu Chen

Abstract

Aiming at the problems of high stochasticity and volatility of power loads as well as the difficulty of accurate load forecasting, this paper proposes a power load forecasting method based on CEEMDAN (Completely Integrated Empirical Modal Decomposition) and TCN-LSTM (Temporal Convolutional Networks and Long-Short-Term Memory Networks). The method combines the decomposition of raw load data by CEEMDAN and the spatio-temporal modeling capability of TCN-LSTM model, aiming to improve the accuracy and stability of forecasting. First, the raw load data are decomposed into multiple linearly stable subsequences by CEEMDAN, and then the sample entropy is introduced to reorganize each subsequence. Then the reorganized sequences are used as inputs to the TCN-LSTM model to extract sequence features and perform training and prediction. The modeling prediction is carried out by selecting the electricity compliance data of New South Wales, Australia, and compared with the traditional prediction methods. The experimental results show that the algorithm proposed in this paper has higher accuracy and better prediction effect on load forecasting, which can provide a partial reference for electricity load forecasting methods.

Publisher

Public Library of Science (PLoS)

Reference28 articles.

1. Global energy forecasting competition 2012;T. Hong;International Journal of Forecasting,2016

2. A review on the forecasting of building energy consumption;H. Li;Renewable and Sustainable Energy Reviews,2017

3. Machine learning for short-term load forecasting: A review;Y. F. Huang;International Journal of Electrical Power & Energy Systems,2019

4. A comprehensive review on load forecasting methods;A. S. Kefeli;Electric Power Systems Research,2019

5. Probabilistic electricity consumption forecasting using residual-inflated mixture autoregressive models;X. Zhang;IEEE Transactions on Power Systems,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3