OD-MVSNet: Omni-dimensional dynamic multi-view stereo network

Author:

Pan Ke,Li Kefeng,Zhang GuangyuanORCID,Zhu Zhenfang,Wang Peng,Wang Zhenfei,Fu Chen,Li Guangchen,Ding Yuxuan

Abstract

Multi-view stereo based on learning is a critical task in three-dimensional reconstruction, enabling the effective inference of depth maps and the reconstruction of fine-grained scene geometry. However, the results obtained by current popular 3D reconstruction methods are not precise, and achieving high-accuracy scene reconstruction remains challenging due to the pervasive impact of feature extraction and the poor correlation between cost and volume. In addressing these issues, we propose a cascade deep residual inference network to enhance the efficiency and accuracy of multi-view stereo depth estimation. This approach builds a cost-volume pyramid from coarse to fine, generating a lightweight, compact network to improve reconstruction results. Specifically, we introduce the omni-dimensional dynamic atrous spatial pyramid pooling (OSPP), a multiscale feature extraction module capable of generating dense feature maps with multiscale contextual information. The feature maps encoded by the OSPP module can generate dense point clouds without consuming significant memory. Furthermore, to alleviate the issue of feature mismatch in cost volume regularization, we propose a normalization-based 3D attention module. The 3D attention module aggregates crucial information within the cost volume across the dimensions of channel, spatial, and depth. Through extensive experiments on benchmark datasets, notably DTU, we found that the OD-MVSNet model outperforms the baseline model by approximately 1.4% in accuracy loss, 0.9% in completeness loss, and 1.2% in overall loss, demonstrating the effectiveness of our module.

Funder

Natural Science Foundation of Shandong Province

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3