A homogeneous time-resolved fluorescence screen to identify SIRT2 deacetylase and defatty-acylase inhibitors

Author:

Yang Jie,Cassel Joel,Boyle Brian C.,Oppong Daniel,Ahn Young-Hoon,Weiser Brian P.ORCID

Abstract

Human sirtuin-2 (SIRT2) has emerged as an attractive drug target for a variety of diseases. The enzyme is a deacylase that can remove chemically different acyl modifications from protein lysine residues. Here, we developed a high-throughput screen based on a homogeneous time-resolved fluorescence (HTRF) binding assay to identify inhibitors of SIRT2’s demyristoylase activity, which is uncommon among many ligands that only affect its deacetylase activity. From a test screen of 9600 compounds, we identified a small molecule that inhibited SIRT2’s deacetylase activity (IC50 = 7 μM) as well as its demyristoylase activity (IC50 = 37 μM). The inhibitor was composed of two small fragments that independently inhibited SIRT2: a halogenated phenol fragment inhibited its deacetylase activity, and a tricyclic thiazolobenzimidazole fragment inhibited its demyristoylase activity. The high-throughput screen also detected multiple deacetylase-specific SIRT2 inhibitors.

Funder

New Jersey Health Foundation

National Institutes of Health

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3