Gene expression and anticancer evaluation of Kigelia africana (Lam.) Benth. Extracts using MDA-MB-231 and MCF-7 cell lines

Author:

Kalsoom Aasia,Altaf Awais,Sattar Huma,Maqbool Tahir,Sajjad Muhammad,Jilani Muhammad Idrees,Shabbir Ghulam,Aftab SairaORCID

Abstract

In recent years, a cancer research trend has shifted towards identifying novel therapeutic compounds from natural assets for the management of cancer. In this study, we aimed to assess the cytotoxic activity of Kigelia Africana (KA) extracts on breast cancer (MDA-MB-231 and MCF-7) and noncancerous kidney cells (HEK-293T) to develop an efficient anticancer medication. We used gas chromatography mass spectrometry (GC-MS to analyze the constituents of EKA and HKA extracts meanwhile the crystal violet and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used to examine the possible cytotoxic effects of plant extracts on our cancer cell lines along with non-cancerous control. The quantitative real-time PCR (RT-PCR) was run on cell samples to evaluate the differential expression of cell proliferative markers of cancer (BCL-2 and TP53). These phytochemicals have been reported to have binding affinity for some other growth factors and receptors as well which was evaluated by the in-silico molecular docking against Bcl2, EGFR, HER2, and TP53. Our Morphological observation showed a significant difference in the cell morphology and proliferation potential which was decreased under the effect of plant extracts treatment as compared to the control samples. The ethanol extract exhibited a marked antiproliferative activity towards MDA-MB-231 and MCF-7 cell lines with IC50 = 20 and 32 μg/mL, respectively. Quantitative RT-PCR gene expression investigation revealed that the IC50 concentration of ethanolic extract regulated the levels of mRNA expression of apoptotic genes. With the target and active binding site amino acids discovered in the molecular docking investigation, TP53/Propanoic acid, 3-(2, 3, 6-trimethyl-1, 4-dioxaspiro [4.4] non-7-yl)-, methyl ester (-7.1 kcal/mol) is the best-docked ligand. The use of this plant in folk remedies justifies its high in vitro anti-cancer capabilities. This work highlights the role of phytochemicals in the inhibition of cancer proliferation. Based on all these findings, it can be concluded that EKA extract has promising anti-proliferative effect on cancerous cells but more study is required in future to further narrow down the active ingredients of total crude extract with specific targets in cancer cells.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3