Photoimmuno-antimicrobial therapy for Staphylococcus aureus implant infection

Author:

Dijk Bruce vanORCID,Oliveira Sabrina,Hooning van Duyvenbode J. Fred F.,Nurmohamed F. Ruben H. A.ORCID,Mashayekhi Vida,Hernández Irati Beltrán,van Strijp Jos,de Vor Lisanne,Aerts Piet C.,Vogely H. Charles,Weinans Harrie,van der Wal Bart C. H.

Abstract

Introduction Implant infections caused by Staphylococcus aureus are responsible for high mortality and morbidity worldwide. Treatment of these infections can be difficult especially when bacterial biofilms are involved. In this study we investigate the potential of infrared photoimmunotherapy to eradicate staphylococcal infection in a mouse model. Methods A monoclonal antibody that targets Wall Teichoic Acid surface components of both S. aureus and its biofilm (4497-IgG1) was conjugated to a photosensitizer (IRDye700DX) and used as photoimmunotherapy in vitro and in vivo in mice with a subcutaneous implant pre-colonized with biofilm of Staphylococcus aureus. A dose of 400 μg and 200 μg of antibody-photosensitizer conjugate 4497-IgG–IRDye700DXwas administered intravenously to two groups of 5 mice. In addition, multiple control groups (vancomycin treated, unconjugated IRDye700DX and IRDye700DX conjugated to a non-specific antibody) were used to verify anti-microbial effects. Results In vitro results of 4497-IgG-IRDye700DX on pre-colonized (biofilm) implants showed significant (p<0.01) colony-forming units (CFU) reduction at a concentration of 5 μg of the antibody-photosensitizer conjugate. In vivo, treatment with 4497-IgG-IRDye700DX showed no significant CFU reduction at the implant infection. However, tissue around the implant did show a significant CFU reduction with 400 μg 4497-IgG-IRDye700DX compared to control groups (p = 0.037). Conclusion This study demonstrated the antimicrobial potential of photoimmunotherapy for selectively eliminating S. aureus in vivo. However, using a solid implant instead of a catheter could result in an increased bactericidal effect of 4497-IgG-IRDye700DX and administration locally around an implant (per operative) could become valuable applications in patients that are difficult to treat with conventional methods. We conclude that photoimmunotherapy could be a potential additional therapy in the treatment of implant related infections, but requires further improvement.

Funder

NWO Netherlands Organization for Scientific Research

Publisher

Public Library of Science (PLoS)

Reference21 articles.

1. Medical progress: Staphylococcus aureus infections;F. D. Lowy;N. Engl. J. Med.,1998

2. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management;S. Y. C. Tong;Clin. Microbiol. Rev.,2015

3. Management of Periprosthetic Joint Infection;M. Cheng Li;Hip Pelvis,2018

4. Staphylococcal Biofilms;M. Otto;Microbiol. Spectr.,2018

5. Pathogenesis and treatment concepts of orthopaedic biofilm infections;W. Zimmerli;FEMS Immunol. Med. Microbiol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3