Opening the dialogue: A preliminary exploration of hair color, hair cleanliness, light, and motion effects on fNIRS signal quality

Author:

Holmes MitchellORCID,Aalto DanielORCID,Cummine Jacqueline

Abstract

Introduction Functional near-infrared spectroscopy (fNIRS) is a promising tool for studying brain activity, offering advantages such as portability and affordability. However, challenges in data collection persist due to factors like participant physiology, environmental light, and gross-motor movements, with limited literature on their impact on fNIRS signal quality. This study addresses four potentially influential factors–hair color, hair cleanliness, environmental light, and gross-motor movements–on fNIRS signal quality. Our aim is to raise awareness and offer insights for future fNIRS research. Methods Six participants (4 Females, 2 Males) took part in four different experiments investigating the effects of hair color, hair cleanliness, environmental light, and gross-motor movements on fNIRS signal quality. Participants in Experiment 1, categorized by hair color, completed a finger-tapping task in a between-subjects block design. Signal quality was compared between each hair color. Participants in Experiments 2 and 3 completed a finger-tapping task in a within-subjects block design, with signal quality being compared across hair cleanliness (i.e., five consecutive days without washing the hair) and environmental light (i.e., sunlight, artificial light, no light, etc.), respectively. Experiment 4 assessed three gross-motor movements (i.e., walking, turning and nodding the head) in a within-subjects block design. Motor movements were then compared to resting blocks. Signal quality was evaluated using Scalp Coupling Index (SCI) measurements. Results Lighter hair produced better signals than dark hair, while the impact of environmental light remains uncertain. Hair cleanliness showed no significant effects, but gross motor movements notably reduced signal quality. Conclusion Our results suggest that hair color, environmental light, and gross-motor movements affect fNIRS signal quality while hair cleanliness does not. Nevertheless, future studies with larger sample sizes are warranted to fully understand these effects. To advance future research, comprehensive documentation of participant demographics and lab conditions, along with signal quality analyses, is essential.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3