Stable isotope and fatty acid variation of a planktivorous fish among and within large lakes

Author:

Höök Tomas O.ORCID,Kalejs Nicholas I.,Axenrot ThomasORCID,Ogonowski Martin,Sandström Alfred

Abstract

Aquatic food webs are spatially complex, potentially contributing to intraspecific variability in production pathway reliance of intermediate trophic level consumers. Variation in trophic reliance may be described by well-established trophic indicators, like stable isotope ratios (δ13C, δ15N), along with emerging trophic indicators, such as fatty acid composition. We evaluated stable isotope ratios and fatty acid profiles of European smelt (Osmerus eperlanus) among and within distinct regions of three large Swedish lakes (Hjälmaren, Mälaren, Vättern) which differed in trophic status. We expected that smelts in more oligotrophic lakes and regions would be characterized by distinct stable isotope signatures and fatty acid profiles, with particularly high polyunsaturated fatty acid (PUFA) relative levels. However, we acknowledge that frequent movement of smelts among regions may serve to spatially integrate their diet and lead to limited within-lake variation in stable isotope ratios and fatty acid composition. As expected, in comparison with more productive lakes (i.e., Hjälmaren and Mälaren), smelts from ultra-oligotrophic Vättern were characterized by low δ15N, high δ13C and high percent of a dominant PUFA, docosahexaenoic acid (DHA). Smelts from different regions of the morphometrically complex Mälaren displayed differential stable isotope ratios and fatty acid relative concentrations, which were consistent with within-lake differences in productivity and water residence times, suggesting that smelts in this lake forage locally within distinct regions. Finally, at the individual smelt level there were particularly strong and consistent associations between a well-established trophic indicator (δ13C) and percent DHA, suggesting that the relative concentration of this fatty acid may be a useful additional trophic indicator for smelt.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3