Carpal tunnel syndrome prediction with machine learning algorithms using anthropometric and strength-based measurement

Author:

Yetiş Mehmet,Kocaman HikmetORCID,Canlı Mehmet,Yıldırım Hasan,Yetiş Aysu,Ceylan İsmail

Abstract

Objectives Carpal tunnel syndrome (CTS) stands as the most prevalent upper extremity entrapment neuropathy, with a multifaceted etiology encompassing various risk factors. This study aimed to investigate whether anthropometric measurements of the hand, grip strength, and pinch strength could serve as predictive indicators for CTS through machine learning techniques. Methods Enrollment encompassed patients exhibiting CTS symptoms (n = 56) and asymptomatic healthy controls (n = 56), with confirmation via electrophysiological assessments. Anthropometric measurements of the hand were obtained using a digital caliper, grip strength was gauged via a digital handgrip dynamometer, and pinch strengths were assessed using a pinchmeter. A comprehensive analysis was conducted employing four most common and effective machine learning algorithms, integrating thorough parameter tuning and cross-validation procedures. Additionally, the outcomes of variable importance were presented. Results Among the diverse algorithms, Random Forests (accuracy of 89.474%, F1-score of 0.905, and kappa value of 0.789) and XGBoost (accuracy of 86.842%, F1-score of 0.878, and kappa value of 0.736) emerged as the top-performing choices based on distinct classification metrics. In addition, using variable importance calculations specific to these models, the most important variables were found to be wrist circumference, hand width, hand grip strength, tip pinch, key pinch, and middle finger length. Conclusion The findings of this study demonstrated that wrist circumference, hand width, hand grip strength, tip pinch, key pinch, and middle finger length can be utilized as reliable indicators of CTS. Also, the model developed herein, along with the identified crucial variables, could serve as an informative guide for healthcare professionals, enhancing precision and efficacy in CTS prediction.

Publisher

Public Library of Science (PLoS)

Reference33 articles.

1. Carpal tunnel syndrome: pathophysiology and clinical neurophysiology;RA Werner;Clinical Neurophysiology,2002

2. Pathophysiology of carpal tunnel syndrome;MS Aboonq;Neurosciences Journal,2015

3. Carpal tunnel syndrome: clinical features, diagnosis, and management;L Padua;The Lancet Neurology,2016

4. Prevalence of carpal tunnel syndrome in a general population;I Atroshi;Jama,1999

5. Assessment of the presence of carpal tunnel syndrome in patients with diabetes mellitus, hypothyroidism and acromegaly;P Oktayoglu;Journal of clinical and diagnostic research: JCDR,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3