CCW-YOLOv5: A forward-looking sonar target method based on coordinate convolution and modified boundary frame loss

Author:

Sun Yan,Yin BoORCID

Abstract

Multi beam forward looking sonar plays an important role in underwater detection. However, due to the complex underwater environment, unclear features, and susceptibility to noise interference, most forward looking sonar systems have poor recognition performance. The research on MFLS for underwater target detection faces some challenges. Therefore, this study proposes innovative improvements to the YOLOv5 algorithm to address the above issues. On the basis of maintaining the original YOLOv5 architecture, this improved model introduces transfer learning technology to overcome the limitation of scarce sonar image data. At the same time, by incorporating the concept of coordinate convolution, the improved model can extract features with rich positional information, significantly enhancing the model’s detection ability for small underwater targets. Furthermore, in order to solve the problem of feature extraction in forward looking sonar images, this study integrates attention mechanisms. This mechanism expands the receptive field of the model and optimizes the feature learning process by highlighting key details while suppressing irrelevant information. These improvements not only enhance the recognition accuracy of the model for sonar images, but also enhance its applicability and generalization performance in different underwater environments. In response to the common problem of uneven training sample quality in forward looking sonar imaging technology, this study made a key improvement to the classic YOLOv5 algorithm. By adjusting the bounding box loss function of YOLOv5, the model’s over sensitivity to low-quality samples was reduced, thereby reducing the punishment on these samples. After a series of comparative experiments, the newly proposed CCW-YOLOv5 algorithm has achieved detection accuracy in object detection mAP@0.5 Reached 85.3%, and the fastest inference speed tested on the local machine was 54 FPS, showing significant improvement and performance improvement compared to existing advanced algorithms.

Funder

National Natural Science Foundation of China

Key R&D Program of Shandong Province

Publisher

Public Library of Science (PLoS)

Reference32 articles.

1. Underwater Object Detection by Combining the Spectral Residual and Three-Frame Algorithm

2. VILLAR S A, ACOSTA G G, SOLARI F J. OS-CFAR Process in 2-D for Object Segmentation from Side-scan Sonar Data.2015 Xvi Workshop on Information Processing and Control (RPIC). New York: IEEE, 2015[2023-05-18].

3. Symbolic Analysis of Sonar Data for Underwater Target Detection;K MUKHERJEE;IEEE Journal of Oceanic Engineering,2011

4. Change Detection Using Synthetic Aperture Sonar: Preliminary Results from the Larvik Trial;O MIDTGAARD;Oceans,2011

5. Measurement of the echo reduction for underwater acoustic passive materials by using the time reversal technique;X W Yan;Chinese Journal of Acoustics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3