Catalyzing satellite communication: A 20W Ku-Band RF front-end power amplifier design and deployment

Author:

Chen JiafaORCID,Wang Fei,Zhang Dawei,Liu Jinsong,Wu Huaxia,Zhou Zhengxian,Yang Haima,Yan Tingzhen,Tang Tianchen

Abstract

This paper presents a groundbreaking Ku-band 20W RF front-end power amplifier (PA), designed to address numerous challenges encountered by satellite communication systems, including those pertaining to stability, linearity, cost, and size. The manuscript commences with an exhaustive discussion of system design and operational principles, emphasizing the intricacies of low-noise amplification, and incorporating key considerations such as noise factors, stability analysis, gain, and gain flatness. Subsequently, an in-depth study is conducted on various components of the RF chain, including the pre-amplification module, driver-amplification module, and final-stage amplification module. The holistic design extends to the inclusion of the display and control unit, featuring the power-control module, monitoring module, and overall layout design of the PA. It is meticulously tailored to meet the specific demands of satellite communication. Following this, a thorough exploration of electromagnetic simulation and measurement results ensues, providing validation for the precision and reliability of the proposed design. Finally, the feasibility of that design is substantiated through systematic system design, prototype production, and exhaustive experimental testing. It is noteworthy that, in the space-simulation environmental test, emphasis is placed on the excellent performance of the Star Ku-band PA within the 13.75GHz to 14.5GHz frequency range. Detailed power scan measurements reveal a P1dB of 43dBm, maintaining output power flatness < ± 0.5dBm across the entire frequency and temperature spectrum. Third-order intermodulation scan measurements indicate a third-order intermodulation of ≤ -23dBc. Detailed results of power monitoring demonstrate a range from +18dBm to +54dBm. Scans of spurious suppression and harmonic suppression, meanwhile, show that the PA evinces spurious suppression ≤ -65dBc and harmonic suppression ≤ -60dBc. Rigorous phase-scan measurements exhibit a phase-shift adjustment range of 0° to 360°, with a step of 5.625°, and a phase-shift accuracy of 0.5dB. Detailed data from gain-scan measurements show a gain-adjustment range of 0dB to 30dB, with a gain flatness of ± 0.5dB. Attenuation error is ≤ 1%. These test parameters perfectly align with the practical application requirements of the technical specifications. When compared to existing Ku-band PAs, our design reflects a deeper consideration of specific requirements in satellite communication, ensuring its outstanding performance and uniqueness. This PA features good stability, high linearity, low cost, and compact modularity, ensuring continuous and stable power output. These features position the proposed system as a leader within the market. Successful orbital deployment not only validates its operational stability; it also makes a significant contribution to the advancement of China’s satellite PA technology, generating positive socio-economic benefits.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference81 articles.

1. Satellite-5G Integration: A Network Perspective;G Giambene;IEEE Network,2018

2. Performance analysis for the forward link of multiuser satellite communication systems;Y Guo;International Journal of Satellite Communications and Networking,2021

3. PDOP parameters improvement using multi-GNSS and signal re-transmission at lunar distances;J Skorepa;Advances in Space Research,2021

4. V/Ka-band LEO high-throughput satellite and integrated satellite–terrestrial network experiment system: First two years flight results;S Zhang;Acta Astronautica,2022

5. Autonomous Orbit Determination System of Navigation Satellite Based on Spaceborne GPS Technology.;L Yang;Security and Communication Networks.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3