Abstract
In Ethiopia, improved hive technology dissemination was started before five-decades. However, the adoption of improved beekeeping technology is still very low. This study was conducted with the main objectives to evaluating improved beekeeping adoption level and honey yields of different hives and identification of major honey bee plants and flora calendar in the Gedeo zone, South Ethiopia. Three districts were selected purposively based on beekeeping potential and the number of improved hives own by beekeepers. The data was collected from 180 respondents using cross-sectional survey. The data was analyzed by using descriptive statistics such as mean, frequency and percentage and ANOVA. The result shown that the compositions of disseminated hives in the entire sampled respondents were 286, 476, 121 and 1494 Zander hive, Kenyan top bar hive (KTBH), Mud/Ethio-Ribrab hive (ERH) and Traditional hives respectively. Traditional beekeeping was the dominant system with 63% and intermediate followed by 25%, while modern beekeeping was only 12%. Based on overall mean honey yield, there was no significant difference (P = 0.244) between Zander and KTBH. However, the average honey yield of these improved hives were significantly (P<0.05) higher than Mud/ERH and Traditional hives. Gedeo zone had rich floral resource and diverse floral calendar. Hygenia abyssinica, Bidens ghedoensis, Erythrinia abyssinica, Eucalyptus species, Cordia africana, Coffee arabica, Vernonia species, Susbania susban and Persea americana were major honey bee flora in Gedeo zone. February-March was major honey harvesting season while May-July and October-December respectively were minor honey harvesting periods. Nevertheless, the majority of beekeepers have been practicing honey harvesting once a year from all hives due to lack of awareness and practical skills. Therefore, we recommend that the local government should focus on educating beekeepers to enable them utilizing exhaustively the opportunities of multi-floral season and improved hive technology to maximize honey yield in the area.
Publisher
Public Library of Science (PLoS)
Reference34 articles.
1. (1994). Honeybee flora of Ethiopia;R. Fichtl;Weikersheim (Germany), Margraf Verlag,1994
2. Assessment of current beekeeping management practice and honey bee floras of Western Amhara, Ethiopia;T. Assemu;International Journal of Agriculture and Biosciences,2013
3. Beekeeping practices, production potential and challenges of bee keeping among beekeepers in Haramaya District, Eastern Ethiopia. Journal of Veterinary Science &;B. Serda;Technology,2015
4. An iconic traditional apiculture of park fringe communities of Borena Sayint National Park, north eastern Ethiopia;H Adal;Journal of Ethnobiology and Ethnomedicine,2015