Segmenting and classifying lung diseases with M-Segnet and Hybrid Squeezenet-CNN architecture on CT images

Author:

Shafi Syed Mohammed,Chinnappan Sathiya KumarORCID

Abstract

Diagnosing lung diseases accurately and promptly is essential for effectively managing this significant public health challenge on a global scale. This paper introduces a new framework called Modified Segnet-based Lung Disease Segmentation and Severity Classification (MSLDSSC). The MSLDSSC model comprises four phases: "preprocessing, segmentation, feature extraction, and classification." Initially, the input image undergoes preprocessing using an improved Wiener filter technique. This technique estimates the power spectral density of the noisy and original images and computes the SNR assisted by PSNR to evaluate image quality. Next, the preprocessed image undergoes Segmentation to identify and separate the RoI from the background objects in the lung image. We employ a Modified Segnet mechanism that utilizes a proposed hard tanh-Softplus activation function for effective Segmentation. Following Segmentation, features such as MLDN, entropy with MRELBP, shape features, and deep features are extracted. Following the feature extraction phase, the retrieved feature set is input into a hybrid severity classification model. This hybrid model comprises two classifiers: SDPA-Squeezenet and DCNN. These classifiers train on the retrieved feature set and effectively classify the severity level of lung diseases.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3