Predicting hotspots for disease-causing single nucleotide variants using sequences-based coevolution, network analysis, and machine learning

Author:

Zheng WenjunORCID

Abstract

To enable personalized medicine, it is important yet highly challenging to accurately predict disease-causing mutations in target proteins at high throughput. Previous computational methods have been developed using evolutionary information in combination with various biochemical and structural features of protein residues to discriminate neutral vs. deleterious mutations. However, the power of these methods is often limited because they either assume known protein structures or treat residues independently without fully considering their interactions. To address the above limitations, we build upon recent progress in machine learning, network analysis, and protein language models, and develop a sequences-based variant site prediction workflow based on the protein residue contact networks: 1. We employ and integrate various methods of building protein residue networks using state-of-the-art coevolution analysis tools (RaptorX, DeepMetaPSICOV, and SPOT-Contact) powered by deep learning. 2. We use machine learning algorithms (Random Forest, Gradient Boosting, and Extreme Gradient Boosting) to optimally combine 20 network centrality scores to jointly predict key residues as hot spots for disease mutations. 3. Using a dataset of 107 proteins rich in disease mutations, we rigorously evaluate the network scores individually and collectively (via machine learning). This work supports a promising strategy of combining an ensemble of network scores based on different coevolution analysis methods (and optionally predictive scores from other methods) via machine learning to predict hotspot sites of disease mutations, which will inform downstream applications of disease diagnosis and targeted drug design.

Funder

NIH

Publisher

Public Library of Science (PLoS)

Reference69 articles.

1. Highly accurate protein structure prediction with AlphaFold;J Jumper;Nature,2021

2. Accurate prediction of protein structures and interactions using a three-track neural network;M Baek;Science,2021

3. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination;TC Terwilliger;Nat Methods,2023

4. Has DeepMind’s AlphaFold solved the protein folding problem?;A Al-Janabi;Biotechniques,2022

5. Unraveling protein’s structural dynamics: from configurational dynamics to ensemble switching guides functional mesoscale assemblies;E Medina;Curr Opin Struct Biol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3