A reverse transcription loop-mediated isothermal amplification assay for quick detection of tomato mosaic virus

Author:

Kirasi Phostine M.ORCID,Ateka Elijah M.,Avedi Edith K.,Yegon Hillary K.,Wanjala Bramwel W.,Pappu Hanu R.

Abstract

Tomato mosaic virus (ToMV), an economically important virus that affects a wide range of crops, is highly contagious, and its transmission is mediated by mechanical means, and through contaminated seeds or planting materials, making its management challenging. To contain its wide distribution, early and accurate detection of infection is required. A survey was conducted between January and May, 2023 in major tomato growing counties in Kenya, namely, Baringo, Kajiado, Kirinyaga and Laikipia, to establish ToMV disease incidence and to collect samples for optimization of the reverse transcription loop-mediated isothermal amplification assay (RT-LAMP) assay. A RT-LAMP assay, utilizing primers targeting the coat protein, was developed and evaluated for its performance. The method was able to detect ToMV in tomato samples within 4:45 minutes, had a 1,000-fold higher sensitivity than conventional reverse transcription polymerase chain reaction (RT-PCR) method and was specific to ToMV. Furthermore, the practical applicability of the assay was assessed using tomato samples and other solanaecous plants. The assay was able to detect the virus in 14 tomato leaf samples collected from the field, compared to 11 samples detected by RT-PCR, further supporting the greater sensitivity of the assay. To make the assay more amenable for on-site ToMV detection, a quick-extraction method based on alkaline polyethylene glycol buffer was evaluated, which permitted the direct detection of the target virus from crude leaf extracts. Due to its high sensitivity, specificity and rapidity, the RT-LAMP method could be valuable for field surveys and quarantine inspections towards a robust management of ToMV infections.

Funder

African Union Commission

Publisher

Public Library of Science (PLoS)

Reference53 articles.

1. Systemic resistance induction of tomato plants against tomato mosaic virus by microalgae;MM Elsharkawy;Egypt journal of biological pest control,2022

2. A new tobamovirus infecting tomato crops in Jordan;N Salem;Archives of virology,2016

3. Sustainable management of transboundary pests requires holistic and inclusive solutions.;BM Prasanna;Food security.,2022

4. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV).;EJ Lefkowitz;Nucleic acids research,2018

5. Epidemiology and control of tomato mosaic virus;L. Broadbent;Annual review of phytopathology,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3