Abstract
Atrial Fibrillation (AF), a type of heart arrhythmia, becomes more common with aging and is associated with an increased risk of stroke and mortality. In light of the urgent need for effective automated AF monitoring, existing methods often fall short in balancing accuracy and computational efficiency. To address this issue, we introduce a framework based on Multi-Scale Dilated Convolution (AF-MSDC), aimed at achieving precise predictions with low cost and high efficiency. By integrating Multi-Scale Dilated Convolution (MSDC) modules, our model is capable of extracting features from electrocardiogram (ECG) datasets across various scales, thus achieving an optimal balance between precision and computational savings. We have developed three MSDC modules to construct the AF-MSDC framework and assessed its performance on renowned datasets, including the MIT-BIH Atrial Fibrillation Database and Physionet Challenge 2017. Empirical results unequivocally demonstrate that our technique surpasses existing state-of-the-art (SOTA) methods in the AF detection domain. Specifically, our model, with only a quarter of the parameters of a Residual Network (ResNet), achieved an impressive sensitivity of 99.45%, specificity of 99.64% (on the MIT-BIH AFDB dataset), and an F 1 a l l score of 85.63% (on the Physionet Challenge 2017 AFDB dataset). This high efficiency makes our model particularly suitable for integration into wearable ECG devices powered by edge computing frameworks. Moreover, this innovative approach offers new possibilities for the early diagnosis of AF in clinical applications, potentially improving patient quality of life and reducing healthcare costs.
Funder
Henan Provincial Science and Technology Research Project
Research project of Zhengzhou Railway Vocational and Technical College
Publisher
Public Library of Science (PLoS)