Abstract
A long-standing key issue for examining the relationships between biodiversity and ecosystem functioning (BEF), such as forest productivity, is whether ecosystem functions are influenced by the total number of species or the properties of a few key species. Compared with controlled ecosystem experiments, the BEF relationships in secondary forest remain unclear, as do the effects of common species richness and rare species richness on the variation in ecosystem functions. To address this issue, we conducted field surveys at five sampling sites (1 ha each) with subtropical secondary evergreen broad-leaved forest vegetation. We found (1) a positive correlation between species richness and standing aboveground biomass (AGB); (2) that common species were primarily responsible for the distribution patterns of species abundance and dominance; although they accounted for approximately 25% of the total species richness on average, they represented 86–91% of species abundance and 88–97% of species dominance; and (3) that common species richness could explain much more of the variation in AGB than total species richness (common species plus rare species) at both the site and plot scales. Because rare species and common species were not equivalent in their ability to predict productivity in the biodiversity-ecosystem productivity model, redundant information should be eliminated to obtain more accurate results. Our study suggested that woody plant species richness and productivity relationship in subtropical forest ecosystem can be explained and predicted by a few common species.
Funder
Science and Technology Bureau of Zhanjiang
Lingnan Normal University
Publisher
Public Library of Science (PLoS)