The impact of lenses on the seepage failure of tailings dam

Author:

Zhang HongORCID,Li Quanming,Wang Jiachen,Fu Botao

Abstract

The presence of lenses such as tailings slurry, frozen soil, and saturated zones disrupts the continuity of tailings dams and their normal seepage patterns, elevating the seepage line of the dam body and significantly impacting local stability. This study, to investigate how lenses affect the stability and failure mechanisms of tailings dams, employs numerical simulation and physical models and constructs a model of the tailings dam, incorporating tailings clay lens and void lens, to investigate variations in hydraulic gradients, seepage velocities, seepage flow, pore water pressure, and the patterns of seepage failure. This research reveals that the tailings clay lens within the dam body increases the hydraulic gradient in its vicinity due to its low permeability and raises the phreatic line. As the tailings clay lens approaches the dam body, the phreatic line tends to escape along the upper part of the lens towards the dam surface. In addition, the void lens could lead to a more pronounced seepage gradient along its path on the dam surface, with a liquefaction beneath it. As the void lens nears the toe of the slope, the dam failure mode transitions from a step-like progressive failure to an arch-shaped settlement failure along the void lens.

Funder

National Key Research and Development Program of China

Publisher

Public Library of Science (PLoS)

Reference30 articles.

1. The Physics of Frost Heave and Ice‐Lens Growth.;S S L PEPPIN;Vadose Zone Journal,2013

2. Geothermal study to explain man-made permafrost in tailings with raised surface;R KNUTSSON;Environmental Earth Sciences,2018

3. Stability investigation and construction of large tailing pond-Investigation record of No. Ⅱ tailing pond in Dexing Copper Mine, Jiangxi Province;Xiao yaohua;Mineral Exploration,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3