Soil quality enhancement by multi-treatment in the abandoned land of dry-hot river valley hydropower station construction area under karst desertification environment

Author:

Wu Qinglin,Sun Rong,Chen Fan,Zhang Xichuan,Wu Panpan,Wang Lan,Li RuiORCID

Abstract

The medium-intensity karst desertification environment is typically characterized by more rocks and less soil. The abandoned land in the construction areas of the dry-hot river valley hydropower station has more infertile soil, severe land degradation, and very low land productivity. Therefore, it is urgent to improve the soil quality to curb the increasingly degrading land and reuse the construction site. Few studies have focused on the effect of soil restoration and comprehensive evaluation of soil quality with multi-treatment in abandoned land in the dry-hot valley hydropower station construction area. Here, 9 soil restoration measures and 1 control group were installed at the Guangzhao Hydropower Station construction in Guizhou Province, China, for physical and chemical property analysis. In total, 180 physical and 90 chemical soil samples were collected on three occasions in May, August, and December 2022. Soil fertility and quality were evaluated under various measures using membership functions and principal component analysis (PCA). This study showed that almost all measures could enhance soil water storage capacity (The average total soil porosity of 9 soil treatments was 57.56%, while that of the control group was 56.37%). With the increase in soil porosity, soil evaporation became stronger, and soil water content decreased. Nevertheless, no decrease in soil water content was observed in the presence of vegetation cover (soil water content: 16.46% of hairy vetch, 13.99% of clover, 13.77% of the control). They also proved that manure, synthetic fertilizer, and straw could promote total and available nutrients (Soil total nutrient content, or the total content of TN、TP、TK,was presented as: synthetic fertilizer (11.039g kg-2)>fowl manure (10.953g kg-2)>maize straw (10.560g kg-2)>control (9.580g kg-2);Total available nutrient content in soil, or the total content of AN,AP,A,was shown as:fowl manure (1287.670 mg kg-1)>synthetic fertilizer (925.889 mg kg-1)>sheep manure (825.979 mg kg-1)>control (445.486 mg kg-1). They could also promote soil fertility, among which the first two reached the higher comprehensive soil quality. Fertilizer was conducive to improve soil quality and fertility, yet long-term application could cause land degradation like soil non-point source pollution, compaction, and land productivity decline. Ultimately, combining fertilizer with biochar or manure is recommended to improve soil fertility. Biochar and green manure could play an apparent role in soil improvement only when there is abundant soil water. The above views provide theoretical support for curbing soil degradation, improving soil fertility and quality, enhancing land productivity, and promoting the virtuous cycle of the soil ecosystem.

Funder

Science and Technology Program of Guizhou Province

Natural Science Foundation of Guizhou Province

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3