Exploring the diagnostic performance of machine learning in prediction of metabolic phenotypes focusing on thyroid function

Author:

Ahn Hyeong JunORCID,Ishikawa KyleORCID,Kim Min-HeeORCID

Abstract

In this study, we employed various machine learning models to predict metabolic phenotypes, focusing on thyroid function, using a dataset from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2012. Our analysis utilized laboratory parameters relevant to thyroid function or metabolic dysregulation in addition to demographic features, aiming to uncover potential associations between thyroid function and metabolic phenotypes by various machine learning methods. Multinomial Logistic Regression performed best to identify the relationship between thyroid function and metabolic phenotypes, achieving an area under receiver operating characteristic curve (AUROC) of 0.818, followed closely by Neural Network (AUROC: 0.814). Following the above, the performance of Random Forest, Boosted Trees, and K Nearest Neighbors was inferior to the first two methods (AUROC 0.811, 0.811, and 0.786, respectively). In Random Forest, homeostatic model assessment for insulin resistance, serum uric acid, serum albumin, gamma glutamyl transferase, and triiodothyronine/thyroxine ratio were positioned in the upper ranks of variable importance. These results highlight the potential of machine learning in understanding complex relationships in health data. However, it’s important to note that model performance may vary depending on data characteristics and specific requirements. Furthermore, we emphasize the significance of accounting for sampling weights in complex survey data analysis and the potential benefits of incorporating additional variables to enhance model accuracy and insights. Future research can explore advanced methodologies combining machine learning, sample weights, and expanded variable sets to further advance survey data analysis.

Funder

National Institute on Minority Health and Health Disparities

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. Organization WH. Obesity and overweight [cited 2021 9 June]. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

2. Abdominal obesity and metabolic syndrome;JP Despres;Nature,2006

3. Metabolically Healthy Obesity;M. Bluher;Endocr Rev,2020

4. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men;J Arnlov;Circulation,2010

5. Thyroid hormone regulation of metabolism;R Mullur;Physiol Rev,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3