Enhancing site selection strategies in clinical trial recruitment using real-world data modeling

Author:

Hulstaert LarsORCID,Twick Isabell,Sarsour Khaled,Verstraete Hans

Abstract

Slow patient enrollment or failing to enroll the required number of patients is a disruptor of clinical trial timelines. To meet the planned trial recruitment, site selection strategies are used during clinical trial planning to identify research sites that are most likely to recruit a sufficiently high number of subjects within trial timelines. We developed a machine learning approach that outperforms baseline methods to rank research sites based on their expected recruitment in future studies. Indication level historical recruitment and real-world data are used in the machine learning approach to predict patient enrollment at site level. We define covariates based on published recruitment hypotheses and examine the effect of these covariates in predicting patient enrollment. We compare model performance of a linear and a non-linear machine learning model with common industry baselines that are constructed from historical recruitment data. Performance of the methodology is evaluated and reported for two disease indications, inflammatory bowel disease and multiple myeloma, both of which are actively being pursued in clinical development. We validate recruitment hypotheses by reviewing the covariates relationship with patient recruitment. For both indications, the non-linear model significantly outperforms the baselines and the linear model on the test set. In this paper, we present a machine learning approach to site selection that incorporates site-level recruitment and real-world patient data. The model ranks research sites by predicting the number of recruited patients and our results suggest that the model can improve site ranking compared to common industry baselines.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3