Are socio-demographic and economic characteristics good predictors of misinformation during an epidemic?

Author:

Maffioli Elisa M.ORCID,Gonzalez RobertORCID

Abstract

We combine data on beliefs about the origin of the 2014 Ebola outbreak with two supervised machine learning methods to predict who is more likely to be misinformed. Contrary to popular beliefs, we uncover that, socio-demographic and economic indicators play a minor role in predicting those who are misinformed: misinformed individuals are not any poorer, older, less educated, more economically distressed, more rural, or ethnically different than individuals who are informed. However, they are more likely to report high levels of distrust, especially towards governmental institutions. By distinguishing between types of beliefs, distrust in the central government is the primary predictor of individuals assigning a political origin to the epidemic, while Muslim religion is the most important predictor of whether the individual assigns a supernatural origin. Instead, educational level has a markedly higher importance for ethnic beliefs. Taken together, the results highlight that government trust might play the most important role in reducing misinformation during epidemics.

Funder

International Growth Centre

Duke Global Health Institute, Duke University

Governance Initiative at JPAL

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3