Prediction of direct carbon emissions of Chinese provinces using artificial neural networks

Author:

Jin HuiORCID

Abstract

Closely connected to human carbon emissions, global climate change is affecting regional economic and social development, natural ecological environment, food security, water supply, and many other social aspects. In a word, climate change has become a vital issue of general concern in the current society. In this study, the carbon emission data of Chinese provinces in 1999–2019 are collected and analyzed, so as to identify the carbon emission of direct consumption per 10,000 residents in each province (including each municipal city and autonomous region) and the entire nation based on population data. The Arc Geographic Information Science Engine (ArcGIS Engine) and C#.NET platform are employed to call the MATLAB neural network toolbox. A model is selected and embedded in the prediction system to develop the entire system. This study demonstrates that the carbon emissions per resident in Northern China are significantly higher than those in Southern China, with the rate of carbon emissions continuing to increase over time. Compared with other models, the Elman neural network has a higher carbon emission prediction accuracy, but with more minor errors. For instance, its accuracy and prediction performance are improved by 55.93% and 19.48%, respectively, compared with the Backpropagation Neural Network (BPNN). The prediction results show that China is expected to reach its peak carbon emission in around 2025–2030. The above results are acquired based on the concept of carbon emissions and neural network model theories, supported by GIS component technology and intelligent methods. The feasibility of BPNN, Radial Basis Function (RBF) and Elman neural network models for predicting residential carbon emissions is analyzed. This study also designs a comprehensive, integrated and extensible visual intelligent platform, which is easy to implement and stable in operation. The trend and characteristics of carbon emission changes from 2027 to 2032 are explored and predicted based on the data about direct carbon emissions of Chinese provincial residents from 1999 to 2019, purposed to provide a scientific basis for the control and planning of carbon emissions.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern US crop farmers;AS Mase;Clim Risk Manag,2017

2. Future climate risk from compound events;J Zscheischler;Nat Clim Change,2018

3. Carbon emission intensity in electricity production: A global analysis;BW Ang;Energy Policy,2016

4. Environmental policy stringency, renewable energy consumption and CO2 emissions: Panel cointegration analysis for BRIICTS countries;RY Wolde;Int J Green Energy,2020

5. Present situation and future prospect of renewable energy in China;D Zhang;Renew Sustain Energy Rev,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3