Ten simple rules for writing Dockerfiles for reproducible data science

Author:

Nüst DanielORCID,Sochat VanessaORCID,Marwick BenORCID,Eglen Stephen J.ORCID,Head Tim,Hirst TonyORCID,Evans Benjamin D.

Abstract

Computational science has been greatly improved by the use of containers for packaging software and data dependencies. In a scholarly context, the main drivers for using these containers are transparency and support of reproducibility; in turn, a workflow’s reproducibility can be greatly affected by the choices that are made with respect to building containers. In many cases, the build process for the container’s image is created from instructions provided in a Dockerfile format. In support of this approach, we present a set of rules to help researchers write understandable Dockerfiles for typical data science workflows. By following the rules in this article, researchers can create containers suitable for sharing with fellow scientists, for including in scholarly communication such as education or scientific papers, and for effective and sustainable personal workflows.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

1. Marwick B. How computers broke science—and what we can do to fix it [Internet]. The Conversation. 2015. https://theconversation.com/how-computers-broke-science-and-what-we-can-do-to-fix-it-49938

2. An invitation to reproducible computational research;DL Donoho;Biostatistics,2010

3. Best practices for scientific computing;G Wilson;PLoS Biol,2014

4. Good enough practices in scientific computing;G Wilson;PLoS Comput Biol,2017

5. Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks;A Rule;PLoS Comput Biol,2019

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3