TSCCA: A tensor sparse CCA method for detecting microRNA-gene patterns from multiple cancers

Author:

Min WenwenORCID,Chang Tsung-HuiORCID,Zhang ShihuaORCID,Wan Xiang

Abstract

Existing studies have demonstrated that dysregulation of microRNAs (miRNAs or miRs) is involved in the initiation and progression of cancer. Many efforts have been devoted to identify microRNAs as potential biomarkers for cancer diagnosis, prognosis and therapeutic targets. With the rapid development of miRNA sequencing technology, a vast amount of miRNA expression data for multiple cancers has been collected. These invaluable data repositories provide new paradigms to explore the relationship between miRNAs and cancer. Thus, there is an urgent need to explore the complex cancer-related miRNA-gene patterns by integrating multi-omics data in a pan-cancer paradigm. In this study, we present a tensor sparse canonical correlation analysis (TSCCA) method for identifying cancer-related miRNA-gene modules across multiple cancers. TSCCA is able to overcome the drawbacks of existing solutions and capture both the cancer-shared and specific miRNA-gene co-expressed modules with better biological interpretations. We comprehensively evaluate the performance of TSCCA using a set of simulated data and matched miRNA/gene expression data across 33 cancer types from the TCGA database. We uncover several dysfunctional miRNA-gene modules with important biological functions and statistical significance. These modules can advance our understanding of miRNA regulatory mechanisms of cancer and provide insights into miRNA-based treatments for cancer.

Funder

Key-Area Research and Development Program of Guangdong Province of China

National Science Foundation of China

Natural Science Foundation of Jiangxi Province of China

China Postdoctoral Science Foundation

Shenzhen Research Institute of Big Data

National Ten Thousand Talent Program for Young Top-notch Talents

National Key Research and Development Program of China

CAS Frontier Science Research Key Project for Top Young Scientist

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3