Inter-trial effects in priming of pop-out: Comparison of computational updating models

Author:

Allenmark FredrikORCID,Gokce AhuORCID,Geyer Thomas,Zinchenko Artyom,Müller Hermann J.ORCID,Shi ZhuanghuaORCID

Abstract

In visual search tasks, repeating features or the position of the target results in faster response times. Such inter-trial ‘priming’ effects occur not just for repetitions from the immediately preceding trial but also from trials further back. A paradigm known to produce particularly long-lasting inter-trial effects–of the target-defining feature, target position, and response (feature)–is the ‘priming of pop-out’ (PoP) paradigm, which typically uses sparse search displays and random swapping across trials of target- and distractor-defining features. However, the mechanisms underlying these inter-trial effects are still not well understood. To address this, we applied a modeling framework combining an evidence accumulation (EA) model with different computational updating rules of the model parameters (i.e., the drift rate and starting point of EA) for different aspects of stimulus history, to data from a (previously published) PoP study that had revealed significant inter-trial effects from several trials back for repetitions of the target color, the target position, and (response-critical) target feature. By performing a systematic model comparison, we aimed to determine which EA model parameter and which updating rule for that parameter best accounts for each inter-trial effect and the associated n-back temporal profile. We found that, in general, our modeling framework could accurately predict the n-back temporal profiles. Further, target color- and position-based inter-trial effects were best understood as arising from redistribution of a limited-capacity weight resource which determines the EA rate. In contrast, response-based inter-trial effects were best explained by a bias of the starting point towards the response associated with a previous target; this bias appeared largely tied to the position of the target. These findings elucidate how our cognitive system continually tracks, and updates an internal predictive model of, a number of separable stimulus and response parameters in order to optimize task performance.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3