Abstract
CPA/AT transporters are made up of scaffold and a core domain. The core domain contains two non-canonical helices (broken or reentrant) that mediate the transport of ions, amino acids or other charged compounds. During evolution, these transporters have undergone substantial changes in structure, topology and function. To shed light on these structural transitions, we create models for all families using an integrated topology annotation method. We find that the CPA/AT transporters can be classified into four fold-types based on their structure; (1) the CPA-broken fold-type, (2) the CPA-reentrant fold-type, (3) the BART fold-type, and (4) a previously not described fold-type, the Reentrant-Helix-Reentrant fold-type. Several topological transitions are identified, including the transition between a broken and reentrant helix, one transition between a loop and a reentrant helix, complete changes of orientation, and changes in the number of scaffold helices. These transitions are mainly caused by gene duplication and shuffling events. Structural models, topology information and other details are presented in a searchable database, CPAfold (cpafold.bioinfo.se).
Funder
Vetenskapsrådet
Knut och Alice Wallenbergs Stiftelse
stockholm university
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献