linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser

Author:

Waschke JohannesORCID,Hlawitschka MarioORCID,Anlas KerimORCID,Trivedi VikasORCID,Roeder IngoORCID,Huisken JanORCID,Scherf NicoORCID

Abstract

In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.

Funder

Max-Planck-Institut für Kognitions- und Neurowissenschaften

European Molecular Biology Laboratory

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference21 articles.

1. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain;C Liu;Nat Neurosci,2020

2. Multi-scale imaging and analysis identify pan-embryo cell dynamics of germlayer formation in zebrafish;G Shah;Nat Commun,2019

3. idtracker.ai: Tracking all individuals in small or large collectives of unmarked animals;F Romero-Ferrero;Nat Methods,2019

4. The 200-year effort to see the embryo;JB Wallingford;Science,2019

5. In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level;K McDole;Cell,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3