Abstract
Drought is a major factor that limiting mung bean development. To clarify the molecular mechanism of mung bean in response to drought stress, 2 mung bean groups were established, the experimental group (drought-treated) and the control group (normal water management). With prominent difference of 2 groups in stomatal conductance, relative water content and phenotype, leaf samples were collected at 4 stages, and the physiological index of MDA, POD, chlorophyll, and soluble proteins were estimated. RNA-seq was used to obtain high quality data of samples, and differentially expressed genes were identified by DESeq2. With GO and KEGG analysis, DEGs were enriched into different classifications and pathways. WGCNA was used to detect the relationship between physiological traits and genes, and qPCR was performed to confirm the accuracy of the data. We obtained 169.49 Gb of clean data from 24 samples, and the Q30 of each date all exceeded 94%. In total, 8963 DEGs were identified at 4 stages between the control and treated samples, and the DEGs were involved in most biological processes. 1270 TFs screened from DEGs were clustered into 158 TF families, such as AP2, RLK-Pelle-DLSVA, and NAC TF families. Genes related to physiological traits were closely related to plant hormone signaling, carotenoid biosynthesis, chlorophyll metabolism, and protein processing. This paper provides a large amount of data for drought research in mung bean.
Funder
the National Natural Science Foundation of China
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献