Exploring the structural basis to develop efficient multi-epitope vaccines displaying interaction with HLA and TAP and TLR3 molecules to prevent NIPAH infection, a global threat to human health

Author:

Srivastava SukritORCID,Verma Sonia,Kamthania Mohit,Saxena Ajay Kumar,Pandey Kailash C.,Pande Veena,Kolbe Michael

Abstract

Nipah virus (NiV) is an emerging zoonotic virus that caused several serious outbreaks in the south asian region with high mortality rates ranging from 40 to 90% since 2001. NiV infection causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. No specific and effective vaccine has yet been reported against NiV. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have designed two Multi-Epitope Vaccines (MEVs) composed of 33 Cytotoxic T lymphocyte (CTL) epitopes and 38 Helper T lymphocyte (HTL) epitopes. Out of those CTL and HTL combined 71 epitopes, 61 novel epitopes targeting nine different NiV proteins were not used before for vaccine design. Codon optimization for the cDNA of both the designed MEVs might ensure high expression potential in the human cell line as stable proteins. Both MEVs carry potential B cell linear epitope overlapping regions, B cell discontinuous epitopes as well as IFN-γ inducing epitopes. Additional criteria such as sequence consensus amongst CTL, HTL and B Cell epitopes was implemented for the design of final constructs constituting MEVs. Hence, the designed MEVs carry the potential to elicit cell-mediated as well as humoral immune response. Selected overlapping CTL and HTL epitopes were validated for their stable molecular interactions with HLA class I and II alleles and in case of CTL epitopes with human Transporter Associated with antigen Processing (TAP) cavity. The structure based epitope cross validation for interaction with TAP cavity was used as another criteria choosing final epitopes for NiV MEVs. Finally, human Beta-defensin 2 and Beta-defensin 3 were used as adjuvants to enhance the immune response of both the MEVs. Molecular dynamics simulation studies of MEVs-TLR3 ectodomain (Human Toll-Like Receptor 3) complex indicated the stable molecular interaction. We conclude that the MEVs designed andin silicovalidated here could be highly potential vaccine candidates to combat NiV infections, with great effectiveness, high specificity and large human population coverage worldwide.

Funder

Helmholtz-Centre for Infection Research

pre4D

Indian Foundation for Fundamental Research Trust

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference115 articles.

1. Molecular epidemiology and phylogeny of nipah virus infection: a mini review.;S. Angeletti;Asian Pacific journal of tropical medicine,2016

2. Paramyxovirus glycoproteins and the membrane fusion process;H.C. Aguilar;Current clinical microbiology reports,2016

3. Nipah Virus Infection;B.S. Ang;Journal of clinical microbiology,2018

4. WHO Report, Surveillance and outbreak alert, Nipah virus; https://www.who.int/health-topics/nipah-virus-infection#tab=tab_1.

5. Prioritizing surveillance of Nipah virus in India.;RK Plowright;PLoS Negl Trop Dis.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3