The communication path and improvement strategy of symbolic culture of sneaker consumption culture using the big data analysis

Author:

Lv ZhongyuanORCID

Abstract

With the emergence of Artificial Intelligence technology and the advancement of science and technology, the current mainstream path of social development is continuously updating and improving various industries using technology. Therefore, in order to promote the development of sneaker consumer culture, this study explores the use of technological means to improve the dissemination effect of symbolic culture in sneaker consumer culture. Firstly, the development concept and mainstream direction of sneaker consumer culture in the era of big data are discussed, and the application principle of big data technology is introduced. Then, a sneaker culture dissemination model based on big data technology is designed. Finally, the model is optimized using a Convolutional Neural Network (CNN), and its effectiveness is evaluated. The results show that the Convolutional Neural Network-Big Data (CNN-BD) model designed in this study has the highest fitting degree of 93% and a lowest fitting degree of 78% in the UT-Zap50K dataset. In the Ai2 dataset, the highest fitting degree of the big data classification model is 94%, and the lowest is 76%. In the Kaggle Women’s Shoe dataset, the highest fitting degree of the big data classification model is 92%, and the lowest is 77%. In the Kaggle Men’s Shoe dataset, the highest fitting degree of the big data classification model is 94%, and the lowest is 79%. The designed model has the highest accuracy rate of 93% in sneaker classification, while other models have the highest accuracy rate of around 82% in sneaker classification. Compared with traditional big data technology, the designed model has greatly improved and can adapt to more working environments. This study not only provides technical support for the application of big data technology but also contributes to improving the dissemination effect and promoting the comprehensive development of sneaker consumer culture.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Semantic analysis of cultural heritage news propagation in social media: Assessing the role of media and journalists in the era of big data;A. Maniou T;Sustainability,2021

2. Social listening: a potential game changer in reputation management How big data analysis can contribute to understanding stakeholders’ views on organisations. Corporate Communications;A Westermann;An International Journal,2021

3. The role of cultural values in consumers’ evaluation of online review helpfulness: a big data approach.;R Filieri;International Marketing Review,2021

4. Does cultural distance affect online review ratings? Measuring international customers’ satisfaction with services leveraging digital platforms and big data;M Mariani M;Journal of Management and Governance,2021

5. Image monitoring and management of hot tourism destination based on data mining technology in big data environment;J Zhang;Microprocessors and Microsystems,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3