Flow and access: Driving forces of COVID-19 spreading in the first stage around Hubei, China

Author:

Zhang TianhaiORCID,Cao Jinqiu

Abstract

Background This research takes the six provinces around Hubei Province where the Corona virus disease 2019 (COVID-19) outbreak as the research area, collected the number of cumulative confirmed cases (NCCC) in the first four weeks after the lockdown to explore the spatiotemporal characteristics, and to identify its influencing factors by correlation and regression analysis, finally providing reference for epidemic prevention and control policy. Methods The analysis of variance was used to test the spatiotemporal variability of the NCCC in the six provinces, the Pearson coefficient was taken to find the correlation relationship between the NCCC and multiple factor data in socio-economic, geography and transportation, and the following regression equation was obtained based on regression analysis. Results This study found that there is significant spatial variability in the NCCC among the six provinces and the significant influencing factors are changing along the four weeks. The NCCC in Shaanxi and Chongqing in the West was less than that in the other four provinces, especially in Shaanxi in the northwest, which was significantly different from the four provinces in the East, and has the largest difference with adjacent Henan province (792 cases). Correlation analysis shows that the correlation coefficient of the number of main pass is the largest in the first week, the correlation coefficient of the length of road networks is the largest in the second week, and the NCCC in the third and fourth week is significantly correlated with the average elevation. For all four weeks, the highest correlation coefficient belongs to the average elevation in the third week (r = 0.943, P = 0.005). Regression analysis shows that there is a multiple linear regression relationship between the average elevation, the number of main pass and the NCCC in the first week, there is no multiple linear regression relationship in the second week. The following univariate regression analysis shows that the regression equations of various factors are different. And, there is a multiple linear regression relationship between the average elevation, the length of road networks and the NCCC in the third and fourth week, as well as a multiple linear regression relationship between the average elevation, population and the confirmed cases in the fourth week. Conclusion There are significant spatial differences in the NCCC among the six provinces and the influencing factors varied in different weeks. The average elevation, population, the number of main pass and the length of road networks are significantly correlated with the NCCC. The average elevation, as a geographical variable, affects the two traffic factors: the number of main pass and the length of road networks. Therefore, the NCCC is mainly related to the factor categories of flow and access.

Funder

Science and Technology Bureau, Chengdu

Sichuan Mineral Resources Research Center

Key projects from Academy of global governance and area studies, Sichuan Normal University

Experimental Technology project of Sichuan Normal University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3