Biochar supported metallo-inorganic nanocomposite: A green approach for decontamination of heavy metals from water

Author:

Khalid Sana,Chaudhary Muhammad Nawaz,Nazir RabiaORCID,Ahmad Sajid RashidORCID,Hussain Naqi,Ayub Yaseen,Ibrar Muhammad

Abstract

Heavy metal contamination of water has become a global environmental burden, which has stirred up agitation worldwide. Fabrication of adsorbents utilizing either low cost, environment friendly materials or waste products can be helpful in remediating environmental pollution. The current study evolved around the synthesis of nanocomposites derived from such raw precursors like spent tea waste biochar, hydroxyapatite, and clays. In this context, two nanocomposites, namely manganese ferrite doped hydroxyapatite/kaolinite/biochar (TK-NC) and manganese ferrite doped hydroxyapatite/vermiculite/biochar (TV-NC), were synthesized followed by their employment for decontamination of heavy metals from aqueous media. TK-NC and TV-NC exhibited the crystallite sizes in the range of 2.55–5.94 nm as obtained by Debye Scherrer Equation and Williamsons–Hall equation The fabricated nanocomposites were characterized using FT-IR, SEM-EDX, and powder XRD. Batch adsorption studies were performed, and influence of different adsorption parameters (contact time, reaction temperature, solution pH, adsorbent dose, and initial adsorbate concentration) on metal adsorption was examined. Thermodynamic studies revealed that the adsorption of Cr(VI), Ni(II) and Cu(II) on TK-NC and TV-NC was endothermic (+ΔH°) and indicates disorderness (+ΔS°) at the solid-liquid interface owing to the strong affinity of metal ions with adsorbent. The heavy metal uptake selectivity followed the following decreasing order; Cr(VI) > Cu(II) > Ni(II) by both nanocomposites, with adsorption capacities falling in the range of 204.68–343.05 mg g-1. Several adsorption kinetic and isotherm models were applied to experimentally calculated data, which suggest favorable adsorption of Cr(VI), Ni(II) and Cu(II) by TK-NC and TV-NC from the system while obeying general-order kinetics and R-P adsorption model, conferring the transition in adsorption kinetics order and involvement of multiple adsorption process.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3