3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach

Author:

Boregowda GangadharaORCID,Mariappan Panchatcharam

Abstract

Microwave ablation (MWA) is a cancer thermal ablation treatment that uses electromagnetic waves to generate heat within the tissue. The goal of this treatment is to eliminate tumor cells while leaving healthy cells unharmed. During MWA, excess heat generation can kill healthy cells. Hence, mathematical models and numerical techniques are required to analyze the heat distribution in the tissue before the treatment. The aim of this research is to explain the implementation of the 3D vector finite element method in a wave propagation model that simulates the specific absorption rate in the liver. The 3D Nedelec elements from H(curl; Ω) space are used to discretize the wave propagation model, and this implementation is helpful in solving many real-world problems that involve electromagnetic propagation with perfect conducting and absorbing boundary conditions. One of the difficulties in ablation treatment is creating a large ablation zone for a large tumor (diameter greater than 3 cm) in a short period of time with minimum damage to the surrounding tissue. This article addresses the aforementioned issue by introducing four antennas into the different places of the tumor sequentially and producing heat uniformly over the tumor. The results demonstrated that 95.5% of the tumor cells were killed with minimal damage to the healthy cells when the heating time was increased to 4 minutes at each position. Subsequently, we studied the temperature distribution and localised tissue contraction in the tissue using the three-dimensional bio-heat equation and temperature-time dependent model, respectively. The local tissue contraction is measured at arbitrary points in the domain and is more noticeable at temperatures higher than 102°C. The thermal damage in the liver during MWA treatment is investigated using the three-state cell death model. The system of partial differential equations is solved numerically due to the complex geometry of the domain, and the results are compared with experimental data to validate the models and parameters.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference63 articles.

1. Hepatocellular carcinoma;ML Josep;Nat Rev Dis Primers,2021

2. Management of hepatocellular carcinoma;J Bruix;Hepatology,2005

3. Ablation techniques for primary and metastatic liver tumors;MJ Ryan;World journal of hepatology,2016

4. Cryoablation of liver tumours–a review of mechanisms, techniques and clinical outcome;T Mala;Minimally Invasive Therapy & Allied Technologies,2006

5. Radiofrequency ablation of liver tumors: influence of technique and tumor size;BW Kuvshinoff;Surgery,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3