Abstract
To overcome the continuous planting obstacle and promote the sustainable production of waxy sorghum, a two-years field experiment was performed to determine the responses of waxy sorghum rhizosphere soil properties to different row ratio configurations in waxy sorghum-soybean intercropping systems. The treatments included five row ratio configurations, which were two rows of waxy sorghum intercropped with one row of soybean (2W1S), two rows of waxy sorghum intercropped with two rows of soybean (2W2S), three rows of waxy sorghum intercropped with one row of soybean (3W1S), three rows of waxy sorghum intercropped with two rows of soybean (3W2S), and three rows of waxy sorghum intercropped with three rows of soybean (3W3S), and sole cropping waxy sorghum (SW) was used as control. The nutrients, enzyme activities, and microbes of waxy sorghum rhizosphere soil were investigated at the jointing, anthesis, and maturity stages. Results showed that rhizosphere soil properties of waxy sorghum were significantly affected by row ratio configurations of waxy sorghum intercropped soybean. Among all treatments, the performances of rhizosphere soil nutrients contents, enzymes activities, and microbes contents were 2W1S > 3W1S > 3W2S > 3W3S > 2W2S > SW. Compared to SW treatment, the 2W1S treatment increased the organic matter, total N, total P, total K, gram-negative bacteria phospholipid fatty acids (PLFAs), and gram-positive bacteria PLFAs contents and catalase, polyphenol oxidase, and urease activities by 20.86%-25.67%, 34.33%-70.05%, 23.98%-33.83%, 44.12%-81.86%, 74.87%-194.32%, 81.59–136.59%, 91.44%-114.07%, 85.35%-146.91%, and 36.32%-63.94%, respectively. Likewise, the available N, available P, available K, total PLFAs, fungus PLFAs, actinomycetes PLFAs, and bacteria PLFAs contents under the 2W1S treatment were 1.53–2.41, 1.32–1.89, 1.82–2.05, 1.96–2.91, 3.59–4.44, 9.11–12.56, and 1.81–2.71 times than those of SW treatment, respectively. Further, the determining factors of soil microbes were total K, catalase, and polyphenol oxidase for total microbes, bacteria, and gram-negative bacteria, total P and available K for fungus, available N, available K, and polyphenol oxidase for actinomycetes, and total K and polyphenol oxidase for gram-positive bacteria. In conclusion, the 2W1S treatment was the optimal row ratio configuration of waxy sorghum intercropped with soybean, which can improve the rhizosphere soil quality and promote the sustainable production of waxy sorghum.
Funder
National Natural Science Foundation of China
Basic Research Program of Guizhou
China Agriculture Research System of MOF and MARA
Special Funds for Industrial Technology System Construction of Characteristic Multigrain in Guizhou
Funds for Local Scientific and Technological Development Guided by Central Government
Publisher
Public Library of Science (PLoS)
Reference57 articles.
1. Genome-wide variations analysis of sorghum cultivar Hongyingzi for brewing Moutai liquor;LB Zhou;Hereditas,2020
2. Optimal fertilization for high yield and good quality of waxy sorghum (Sorghum bicolor L.;C Wang;Field Crops Res,2017
3. Drought resistance identification and drought resistance indices screening of liquor-making waxy sorghum resources at adult plant stage;C Wang;Sci. Agric. Sin,2017
4. Genetic diversity and population structure analysis of grain-use sorghum based on genotyping by sequencing technology;C Wang;J. Plant Genet. Res,2019
5. Effects of sowing time and growing density on agronomic traits, grain yield, and grain quality of waxy sorghum cultivar Hongliangfeng 1;C Wang;J. Agric. Sci,2019