A framework model for current land condition in Iceland

Author:

Arnalds Ólafur,Marteinsdóttir BryndísORCID,Brink Sigmundur Helgi,Þórsson Jóhann

Abstract

Iceland border the Arctic with cold maritime climate and a large proportion of the land placed at highland plateaus. About 1100 years of human disturbance, such as grazing and wood harvesting, has left much of the island’s ecosystems in a poor state, ranging from barren deserts to areas with altered vegetative composition and degraded soils. We constructed a novel resilience-based model (RBC-model) for current land condition in Iceland to test which and how factors, including elevation, slope characteristics, drainage, and proximity to volcanic activity, influence the resilience and stability of ecosystems to human disturbances. We tested the model by randomly placing 500 sample areas (250 x 250 m) all over the country and obtaining values for each factor and current land conditions for each area from existing databases and satellite images. Elevation and drainage explained the largest portions of variability in land condition in Iceland, while both proximity to volcanic activity and the presence of scree slopes also yielded significant relationships. Overall, the model explained about 65% of the variability. The model was improved (R2 from 0.65 to 0.68) when the country was divided into four broadly defined regions. Land condition at the colder northern peninsulas was poorer at lower elevations compared to inland positions. This novel RBC model was successful in explaining differences in present land condition in Iceland. The results have implication for current land use management, especially grazing, suggesting that management should consider elevation, drainage, slopes and location within the country in addition to current land condition.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3