Phenomics and transcriptomics analyses reveal deposition of suberin and lignin in the short fiber cell walls produced from a wild cotton species and two mutants

Author:

Kim Hee JinORCID,Liu Yongliang,Thyssen Gregory N.ORCID,Naoumkina MarinaORCID,Frelichowski James

Abstract

Fiber length is one of the major properties determining the quality and commercial value of cotton. To understand the mechanisms regulating fiber length, genetic variations of cotton species and mutants producing short fibers have been compared with cultivated cottons generating long and normal fibers. However, their phenomic variation other than fiber length has not been well characterized. Therefore, we compared physical and chemical properties of the short fibers with the long fibers. Fiber characteristics were compared in two sets: 1) wild diploid Gossypium raimondii Ulbrich (short fibers) with cultivated diploid G. arboreum L and tetraploid G. hirsutum L. (long fibers); 2) G. hirsutum short fiber mutants, Ligon-lintless 1 (Li1) and 2 (Li2) with their near isogenic line (NIL), DP-5690 (long fibers). Chemical analyses showed that the short fibers commonly consisted of greater non-cellulosic components, including lignin and suberin, than the long fibers. Transcriptomic analyses also identified up-regulation of the genes related to suberin and lignin biosynthesis in the short fibers. Our results may provide insight on how high levels of suberin and lignin in cell walls can affect cotton fiber length. The approaches combining phenomic and transcriptomic analyses of multiple sets of cotton fibers sharing a common phenotype would facilitate identifying genes and common pathways that significantly influence cotton fiber properties.

Funder

Agricultural Research Service

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference86 articles.

1. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis;HJ Kim;Plant Physiology,2001

2. Cotton fiber: a powerful single-cell model for cell wall and cellulose research;CH Haigler;Frontiers in Plant Science,2012

3. Cytochemistry of developing cotton fibers:: A hypothesized relationship between motes and non-dyeing fibers;KG Weis;Field crops research,1999

4. Lignin Deposition in Cotton Cells–Where is the lignin;C Macmillan;J Plant Biochem Physiol,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3