Study of entanglement via a multi-agent dynamical quantum game

Author:

Te’eni AmitORCID,Peled Bar Y.,Cohen Eliahu,Carmi AvishyORCID

Abstract

At both conceptual and applied levels, quantum physics provides new opportunities as well as fundamental limitations. We hypothetically ask whether quantum games inspired by population dynamics can benefit from unique features of quantum mechanics such as entanglement and nonlocality. For doing so, we extend quantum game theory and demonstrate that in certain models inspired by ecological systems where several predators feed on the same prey, the strength of quantum entanglement between the various species has a profound effect on the asymptotic behavior of the system. For example, if there are sufficiently many predator species who are all equally correlated with their prey, they are all driven to extinction. Our results are derived in two ways: by analyzing the asymptotic dynamics of the system, and also by modeling the system as a quantum correlation network. The latter approach enables us to apply various tools from classical network theory in the above quantum scenarios. Several generalizations and applications are discussed.

Funder

Foundational Questions Institute

Ministry of Science, Technology and Space

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference25 articles.

1. Quantum games and quantum strategies;J Eisert;Phys Rev Lett,1999

2. Multiplayer quantum games;SC Benjamin;Phys Rev A,2001

3. An invitation to quantum game theory;EW Piotrowski;Int J Theor Phys,2003

4. Entanglement guarantees emergence of cooperation in quantum prisoner’s dilemma games on networks;A Li;Sci Rep,2014

5. Nonlinear Bell inequalities tailored for quantum networks;D Rosset;Phys Rev Lett,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3