Dynamic sub-route-based self-adaptive beam search Q-learning algorithm for traveling salesman problem

Author:

Zhang JinORCID,Liu Qing,Han XiaoHang

Abstract

In this paper, a dynamic sub-route-based self-adaptive beam search Q-learning (DSRABSQL) algorithm is proposed that provides a reinforcement learning (RL) framework combined with local search to solve the traveling salesman problem (TSP). DSRABSQL builds upon the Q-learning (QL) algorithm. Considering its problems of slow convergence and low accuracy, four strategies within the QL framework are designed first: the weighting function-based reward matrix, the power function-based initial Q-table, a self-adaptive ε-beam search strategy, and a new Q-value update formula. Then, a self-adaptive beam search Q-learning (ABSQL) algorithm is designed. To solve the problem that the sub-route is not fully optimized in the ABSQL algorithm, a dynamic sub-route optimization strategy is introduced outside the QL framework, and then the DSRABSQL algorithm is designed. Experiments are conducted to compare QL, ABSQL, DSRABSQL, our previously proposed variable neighborhood discrete whale optimization algorithm, and two advanced reinforcement learning algorithms. The experimental results show that DSRABSQL significantly outperforms the other algorithms. In addition, two groups of algorithms are designed based on the QL and DSRABSQL algorithms to test the effectiveness of the five strategies. From the experimental results, it can be found that the dynamic sub-route optimization strategy and self-adaptive ε-beam search strategy contribute the most for small-, medium-, and large-scale instances. At the same time, collaboration exists between the four strategies within the QL framework, which increases with the expansion of the instance scale.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. The traveling salesman problem: a guided tour of combinatorial optimization.;EL Lawler;Wiley-Inter science Series in Discrete Mathematics.,1986

2. An Exact Parallel Algorithm for the Resource Constrained Traveling Salesman Problem with Application to Scheduling with an Aggregate Deadline;JF Pekny;ACM Conference on Computer Science,1990

3. An Exact Constraint Logic Programming Algorithm for the Traveling Salesman Problem with Time Windows.;G Pesant;Transportation Science.,1998

4. Improving an exact solver for the traveling salesman problem using partition crossover.;D Sanches;In: Genetic and Evolutionary Computation Conference; 2017.

5. An effective implementation of the Lin–Kernighan traveling salesman heuristic;K. Helsgaun;European journal of operational research,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the Traveling Salesman Problem Solutions with Reinforcement Learning: A Variant Exploration-Exploitation Approach Beyond ε-Greedy;2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3