Computational capabilities of a multicellular reservoir computing system

Author:

Nikolić VladimirORCID,Echlin MoriahORCID,Aguilar BorisORCID,Shmulevich IlyaORCID

Abstract

The capacity of cells to process information is currently used to design cell-based tools for ecological, industrial, and biomedical applications such as detecting dangerous chemicals or for bioremediation. In most applications, individual cells are used as the information processing unit. However, single cell engineering is limited by the necessary molecular complexity and the accompanying metabolic burden of synthetic circuits. To overcome these limitations, synthetic biologists have begun engineering multicellular systems that combine cells with designed subfunctions. To further advance information processing in synthetic multicellular systems, we introduce the application of reservoir computing. Reservoir computers (RCs) approximate a temporal signal processing task via a fixed-rule dynamic network (the reservoir) with a regression-based readout. Importantly, RCs eliminate the need of network rewiring, as different tasks can be approximated with the same reservoir. Previous work has already demonstrated the capacity of single cells, as well as populations of neurons, to act as reservoirs. In this work, we extend reservoir computing in multicellular populations with the widespread mechanism of diffusion-based cell-to-cell signaling. As a proof-of-concept, we simulated a reservoir made of a 3D community of cells communicating via diffusible molecules and used it to approximate a range of binary signal processing tasks, focusing on two benchmark functions—computing median and parity functions from binary input signals. We demonstrate that a diffusion-based multicellular reservoir is a feasible synthetic framework for performing complex temporal computing tasks that provides a computational advantage over single cell reservoirs. We also identified a number of biological properties that can affect the computational performance of these processing systems.

Funder

NSERC

Institute for Systems Biology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference88 articles.

1. Intracellular signalling proteins as ‘smart’ agents in parallel distributed processes;MJ Fisher;Biosystems,1999

2. (Actino)Bacterial “intelligence”: using comparative genomics to unravel the information processing capacities of microbes;D Pinto;Current Genetics,2016

3. Information processing in bacteria: memory, computation, and statistical physics: a key issues review;G Lan;Reports on Progress in Physics,2016

4. Information Transfer During Food Choice in the Slime Mold Physarum polycephalum;SK Ray;Frontiers in Ecology and Evolution,2019

5. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients;DR Brumley;Proceedings of the National Academy of Sciences,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3