Abstract
ObjectiveThisin vivostudy, aimed to biomechanically, histomorphometrically and histologically evaluate an implant surface coated with nanostructured hydroxyapatite using the wet chemical process (biomimetic deposition of calcium phosphate coating) when compared to a dual acid-etching surface.Material and methodsTen sheep (2–4 years old) received 20 implants, 10 with nanostructured hydroxyapatite coating (HAnano), and 10 with dual acid-etching surface (DAA). The surfaces were characterized with scanning electron microscopy and energy dispersive spectroscopy; insertion torque values and resonance frequency analysis were measured to evaluate the primary stability of the implants. Bone-implant contact (BIC) and bone area fraction occupancy (BAFo) were evaluated 14 and 28 days after implant installation.ResultsThe HAnano and DAA groups showed no significant difference in insertion torque and resonance frequency analysis. The BIC and BAFo values increased significantly (p<0.05) over the experimental periods in both groups. This event was also observed in BIC value of HAnano group. The HAnano surface showed superior results compared to DAA after 28 days (BAFo, p = 0.007; BIC, p = 0.01).ConclusionThe results suggest that the HAnano surface favors bone formation when compared to the DAA surface after 28 days in low-density bone in sheep.
Publisher
Public Library of Science (PLoS)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献