Improving the acceptability of social robots: Make them look different from humans

Author:

Nazir Tatjana A.ORCID,Lebrun Benjamin,Li Bing

Abstract

The social robots market will grow considerably in the coming years. What the arrival of these new kind of social agents means for society, however, is largely unknown. Existing cases of robot abuse point to risks of introducing such artificial social agents (ASAs) without considerations about consequences (risks for the robots and the human witnesses to the abuse). We believe that humans react aggressively towards ASAs when they are enticed into establishing dominance hierarchies. This happens when there is a basis for skill comparison. We therefore presented pairs of robots on which we varied similarity and the degree of stimulatability of their mechanisms/functions with the human body (walking, jumping = simulatable; rolling, floating = non-simulatable). We asked which robot (i) resembled more a human, (ii) possessed more “essentialized human qualities” (e.g. creativity). To estimate social acceptability, participants had also (iii) to predict the outcome of a situation where a robot approached a group of humans. For robots with simulatable functions, rating of essentialized human qualities decreased as human resemblance decreased (jumper < walker). For robots with non-simulable functions, the reversed relation was seen: robots that least resembled humans (floater) scored highest in qualities. Critically, robot’s acceptability followed ratings of essentialized human qualities. Humans respond socially to certain morphological (physical aspects) and behavioral cues. Therefore, unless ASAs perfectly mimic humans, it is safer to provide them with mechanisms/functions that cannot be simulated with the human body.

Funder

MEL (Métropole européenne de Lille) and the I-SITE ULNE

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference50 articles.

1. “Aido” https://aidorobot.com/.

2. “Buddy” https://www.bluefrogrobotics.com/.

3. “Nao” https://www.softbankrobotics.com/emea/fr/nao.

4. “Sophia” https://www.hansonrobotics.com/sophia/.

5. “Ameca” https://www.engineeredarts.co.uk/robot/ameca/.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3