The role of photobehaviour in sponge larval dispersal and settlement

Author:

Whalan SteveORCID

Abstract

Deciphering the behavioural ecology of adult (sessile) sponges is challenging. However, their motile larval stages afford opportunities to investigate how behaviour contributes to dispersal and selection of habitat. Light is a fundamental cue contributing to larval sponge dispersal where photoreceptive cells contribute to this process. But how universal is light as a cue to sponge larval dispersal and settlement? Behavioural choice experiments were used to test the effect of light on dispersal and settlement behaviours. Larvae of the tropical sponge species Coscinoderma mathewsi, Luffariella variabilis, Ircinia microconnulosa, and Haliclona sp., from deep (12–15 m) and shallower-water habitats (2–5 m), were used in experiments. Dispersal experiments provided a light-gradient-choice where light represented light attenuation with depth. Light treatments included white light and the spectral components of red and blue light. Settlement experiments comprised a choice between illuminated and shaded treatments. Fluorescence microscopy was used to establish the presence of fluorescent proteins associated with posterior locomotory cilia. Deeper-water species, C. mathewsi and I. microconnulosa discriminate light spectral signatures. Both species changed dispersal behaviour to light spectra as larvae aged. For C. mathewsi positive phototaxis to blue light changed to photophobic responses (all light treatments) after six hours and behaviours in I. microconnulosa changed from positive to negative phototaxis (white light) after six hours. L. variabilis, also a deeper-water species, was negatively phototactic to all light treatments. Larvae from the shallow-water species, Haliclona sp., moved towards all light wavelengths tested. There was no effect of light on settlement of the shallow-water Haliclona sp., but larvae in all three deeper-water species showed significantly higher settlement in shaded treatments. Fluorescence microscopy showed discrete fluorescent bands contiguous to posterior tufted cilia in all four species. These fluorescent bands may play a contributory role in larval photobehaviour.

Funder

Templeton World Charity Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference68 articles.

1. Adaptation and constraint in the complex life-cycles of animals;NA Moran;Annual Review of Ecology and Systematics,1994

2. What is metamorphosis?;CD Bishop;Integrative and Comparative Biology,2006

3. A complex life cycle in a warming planet: gene expression in thermally stressed sponges;N Webster;Molecular Ecology,2013

4. The effect of temperature on larval pre-settlement duration and metamorphosis for the sponge, Rhopaloeides odorabile;S Whalan;Coral Reefs,2008

5. Complex Life-cycles;HM Wilbur;Annual Review of Ecology and Systematics,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3